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Abstract

Alzheimer’s disease (AD) is characterized by gradual neurodegeneration and loss of brain 

function, especially for memory during early stages. Regression analysis has been widely applied 

to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from 

MRI measures. In particular, sparse models have been proposed to identify the optimal imaging 

markers with high prediction power. However, the complex relationship among imaging markers 

are often overlooked or simplified in the existing methods. To address this issue, we present a new 

sparse learning method by introducing a novel network term to more flexibly model the 

relationship among imaging markers. The proposed algorithm is applied to the ADNI study for 

predicting cognitive outcomes using MRI scans. The effectiveness of our method is demonstrated 

by its improved prediction performance over several state-of-the-art competing methods and 

accurate identification of cognition-relevant imaging markers that are biologically meaningful.

1 Introduction

Characterized by gradual loss of brain function, especially the memory and cognitive 

capabilities, Alzheimer’s disease (AD) is a neurodegenerative disorder that has attracted 

tremendous research attention due to its significant public health impact and unknown 

disease mechanisms. Neuroimaging data, which characterize brain structure and function 

and its longitudinal changes, have been studied as potential biomarkers for early detection of 

AD. Regression models have been studied to relate imaging markers to AD phenotypes such 

as cognitive outcomes.
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Early applications focused on traditional regression models such as stepwise regression [6], 

which predicted cognitive outcomes one at a time. To address the relationships among 

multiple outcomes, multi-task learning strategies were recently proposed for achieving 

improved prediction performance. For example, ℓ2,1-norm [8,11] was emploed to extract 

features that have impact on all or most clinical scores; and a sparse Bayesian method [7] 

was proposed to explicitly estimate the covariance structure among multiple outcome 

measures.

Despite of the above achievements, few regression models take into account the covariance 

structure among predictors. Since brain structures tend to work together to achieve a certain 

function, brain imaging measures are often correlated with each other. A recent study 

proposed a prior knowledge guided regression model, using the group information to 

enforce the intra-group similarity [10]. However, the relationships among brain structures 

are much more complicated than a simple partitioning of all the structures into non-

overlapping groups. To overcome this limitation, we present a new sparse learning method 

by introducing a novel network term to more flexibly model the relationship among brain 

imaging measures. This new model not only preserves the strength of ℓ2,1-norm to enforce 

similarity across multiple scores from a cognitive test, but also takes into account the 

complex network relationship among imaging predictors. We empirically demonstrate its 

effectiveness by applying it to the ADNI data.

2 Network-Guided Sparse Regression

Throughout this section, we write matrices as boldface uppercase letters and vectors as 

boldface lowercase letters. Given a matrix M = (mij), its i-th row and j-th column are 

denoted as mi and mj respectively. The Frobenius norm and ℓ2,1-norm (also called as ℓ1,2-

norm) of a matrix are defined as  and 

, respectively.

We focus on multi-task learning paradigm, where imaging measures are used to predict one 

or more cognitive outcomes. Let {x1, ···, xn} ⊆ ℜd be imaging measures and {y1, ···, yn} ⊆ 

ℜc cognitive outcomes, where n is the number of samples, d is the number of predictors 

(feature dimensionality) and c is the number of response variables (tasks). Let X = [x1, …, 

xn] and Y = [y1, …, yn].

Motivated by using the ℓ1 norm (Lasso, [5]) to impose sparsity on relevant features, the ℓ2,1 

norm [3] was first proposed to taking into account the relationship among responses while 

still preserving the sparsity advantage of Lasso. The object function is:

(1)

This approach couples multiple tasks together, with ℓ2 norm within tasks and ℓ1 norm within 

features. While the ℓ2 norm enforces the selection of similar features across tasks, the ℓ1 

norm helps achieve the final sparsity. It has been widely applied to capture biomarkers 
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having affects across most or all responses. Yet in this model the rows of W are equally 

treated, which implies that the underlying structures among predictors are ignored. To 

address this issue, Group-Sparse Multi-task Regression and Feature Selection (G-SMuRFS) 

method [9] was proposed to exploit the interrelated structures within and between the 

predictor and response variables. It assumes 1) possible partition exists among predictors, 

and 2) predictors within one partition should have similar weights.

However, in practice the relationship among predictors may not be as simple as a 

straightforward partition. For example, imaging markers can be grouped by different brain 

circuitries, which may overlap with each other. In addition, instead of partitioning predictors 

into groups, the relationship among predictors can be represented more generally by a 

network (e.g., Figure 1(a)). To model these more complicated but more flexible structures 

among predictors, we propose a new Network-Guided ℓ2,1 Sparse Learning (NG-L21) model 

as follows. The key idea here is to introduce a new regularization term ( ) to the ℓ2,1 

model (Eq (1)) and formulate the objective function as:

(2)

where α is a sparse matrix in which each row indicates a neighborhood relationship within a 

network of connected predictors.

Fig. 1(a) shows a schematic example of α as well as the entire NG-L21 model. A network is 

given as prior knowledge, where nodes are predictors. In this study, the network is 

constructed as follows: An edge (i, j) is inserted to the network if and only if r(i, j) exceeds a 

given threshold (e.g., 0.5 used in our experiments), where r(i, j) is the Pearson correlation 

coefficient between predictors i and j calculated based on the training data. Fig. 1(b) shows 

an example correlation network. Based on the network, we can define the knowledge matrix 

α as follows: for each edge i, j in the network, we create a row in α with i-th entry as −1, j-th 

entry as 1 and all the other entries as zeros. The intuition is that the weight difference 

between two correlated predictors should be minimized, which is reflected by the new 

regularization term of . We call this model NG-L21. Instead of using −1 and 1 in α, 

we can fill in the actual −r(i, j) and r(i, j) values for each edge (i, j). Thus, the more 

correlated a feature pair is, the more constraint the pair is imposed by. We call this weighted 

model NG-L21w.

Eq. (2) can be solved by taking the derivative w.r.t W and setting it to 0:

(3)

where D1 = αT α, a matrix in which each row integrates all the neighboring relationships. 

For i-th row, it is the sum of all the rows in α whose i-th element is not zero. D2 is a 

diagonal matrix with the i-th diagonal element as . Thus, we have

(4)
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where W can be efficiently obtained by solving the linear equation (XXT + γ1D1 + γ2D2)W 
= XYT. Following [9], an efficient iterative algorithm based on Eq. (4) can be easily 

developed as follows.

Next, we prove that the above algorithm converges to the global optimum. According to 

Step 2 in the algorithm, we have

Finally we have:

The last but one step holds, because [8] for any vector w and w0, we have 

. Thus, the algorithm decreases the objective value in each 

iteration. Since the problem is convex, satisfying the Eq. (2) indicates that W is the global 

optimum solution. Therefore, this algorithm will converge to the global optimum of the 

problem.

3 Experimental Results

3.1 Data and Experimental Setting

The magnetic resonance imaging (MRI) and cognitive data were downloaded from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. One goal of ADNI has been 

to test whether serial MRI, positron emission tomography (PET), other biological markers, 

and clinical and neuropsychological assessment can be combined to measure the progression 

of mild cognitive impairment (MCI) and early AD. For up-to-date information, see 

www.adni-info.org.
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This study included 179 AD and 205 healthy control (HC) participants (Table 1). For each 

baseline MRI scan, FreeSurfer V4 was employed for brain segmentation and cortical 

parcellation, and extracted 73 thickness measures and 26 volume measures. These 99 

imaging measures were used to predict three sets of cognitive scores [1] separately: Mini-

Mental State Exam (MMSE), Rey Auditory Verbal Learning Test (RAVLT, including 5 

scores shown in Table 2 as joint response variables), and Wechsler Memory Scale III logical 

memory (LogMem). Using the regression weights derived from the HC participants, all the 

imaging measures were pre-adjusted for the baseline age, gender, education, handedness, 

and intracranial volume, and all the cognitive measures were pre-adjusted for the baseline 

age, gender, education and handedness.

Regression was performed separately on each cognitive task (MMSE, RAVLT, or LogMem) 

using the MRI measures as predictors, where the proposed NG-L21 and NG-L21w methods 

and three competing regression methods (Linear, Ridge and L21) were evaluated. Pearson 

correlation coefficients r between the actual and predicted cognitive scores were computed 

to measure the prediction performance. Five-fold cross validation was employed to obtain an 

unbiased estimate of regression performance. Paired t-test was applied to the cross-

validation results to evaluate whether performance significantly differ between two methods.

3.2 Network Construction

Each MRI measure was treated as a network node, and the connectivity network among 99 

MRI measures was constructed based on their pairwise Pearson correlation coefficients. 

Rather than including all pairwise links, threshold 0.5 was applied to connect only highly 

correlated nodes. For nodes that were not very correlated, constraints should not be imposed 

to make their regression weights similar to each other. A network was created using only the 

training data. Thus, our 5 cross-validation trials yielded 5 networks that were almost 

identical. One example was shown in Fig. 1(b), where totally 85 structures out of 99 had 

qualified links with correlation coefficient higher than 0.5. To incorporate this connectivity 

information into the proposed models, we examined the weighted network in NG-L21w and 

non-weighted one in NG-L21. While in the weighted network each link between structures 

was assigned the value of their correlation coefficient, non-weighted network treated all the 

links equally.

3.3 Prediction Performance and Biomarker Identification

Shown in Table. 3 is the performance comparison among all five methods. NG-L21 and 

NG-L21w both demonstrated an improved performance over the other three methods, while 

L21 performed the best among the three competing methods. The difference between NG-

L21 and NG-L21w was minor, and the weighted method only led to slight improvements 

than non-weighted one for TOTAL, TOT6 and LogMem. This could be partially due to the 

small range of the edge weights (0.5–1.0). To further make sure the improvements of the 

proposed methods were not by chance, we calculated p-values from the paired sample t test 

between two sets of cross-validation correlation coefficients from two different methods. 

According to the last two rows in Table 3, both NG-L21 and NG-L21w outperformed L21 

significantly for predicting all the tested cognitive outcomes.
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Finally, we examined the biomarkers identified by different methods. Shown in Fig. 2 was 

an example comparison of resulting regression coefficients among four methods (NG-L21w 

was extremely similar to NG-L21 and thus not shown), where 99 MRI measures were used 

to predict MMSE score. Each methods occupied two panels, representing the left and right 

hemispheres respectively. Apparently NG-L21 and L21 both showed sparse patterns while 

Linear and Ridge methods yielded non-sparse patterns that were hard to interpret. In 

addition, NG-L21 tended to select slightly more features than L21 as correlated measures 

were forced to be selected together in NG-L21, which yielded not only more stable patterns 

across cross-validation trials but also more biologically meaningful and more interpretable 

results. The MRI markers identified by NG-L21 yielded promising patterns that matched 

prior knowledge on neuroimaging and cognition. MMSE measured overall cognitive 

impairment; and thus its result (Fig. 2) included important AD-relevant imaging markers 

such as hippocampus, amygdala, inferior lateral ventricle, entorhinal cortex, and middle 

temporal gyri. Both LogMem and RAVLT were memory tests; and thus their results (Fig. 2) 

included regions relevant to memory, such as hippocampus, amygdala, entorhinal cortex, 

middle temporal gyri and parahippocampal gyri.

4 Conclusions

We presented a new network-guided sparse learning model NG-L21 and demonstrated its 

effectiveness by applying it to the ADNI data for predicting cognitive outcomes from MRI 

scans. While spatial correlation had been considered in several voxel-based feature selection 

and learning models [2, 4], the existing studies on predicting cognitive outcomes from ROI-

based MRI measures often ignored [7, 8] or simplified [10] the relationships among these 

ROI predictors. The proposed NG-L21 model aimed to bridge this gap and introduced a 

novel network term to flexibly model the relationship among imaging markers. An efficient 

algorithm was developed to implement this model and was shown to be able to achieve 

global optimum. Its application to the ADNI data exhibited the following strengths of the 

NG-L21 model: (1) It could flexibly take into account the complex relationship among 

imaging markers in a network format rather than a simple grouping scheme used in [10]. (2) 

As a multi-task sparse learning framework, it could identify a compact set of imaging 

markers related to multiple cognitive outcomes. (3) By considering the correlation among 

predictors, it yielded not only improved prediction performance but also more stable cross-

validation feature selection patterns. Different from traditional Lasso and L21 methods that 

tended to select only one relevant feature from a group of highly correlated ones, the NG-

L21 model could jointly identify these correlated features, making the results more stable 

and easier to interpret.
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Fig. 1. 
(a) Illustration of the proposed NG-L21 model: This model enforces l2,1-norm regularization 

(||W||2,1) to jointly select prominent predictors for all response variables, and introduces a 

new regularization term ( ) to flexibly model the relationship among predictors based 

on prior knowledge. (b) Correlation network among 99 FreeSurfer measures in an example 

cross-validation trial: Two measures are connected if their Pearson correlation coefficient, 

calculated from the training data, is ≥ 0.5.
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Fig. 2. 
Heat maps of regression weights for predicting MMSE scores using MRI measures. Five-

fold cross-validation regression weights are plotted for NG-L21, L21, Ridge and Linear 

regression models respectively. Each panel corresponds to the measures from the left (L) or 

right (R) hemisphere. The measures shown in the first seven column (highlighted in blue) 

are unilateral, and the remaining ones are bilateral.
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Fig. 3. 
NG-L21 weight maps on brain for (a) RAVLT-TOTAL and (b) LogMem scores.
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Table 1

Participant characteristics.

Category HC AD

Number 205 179

Gender(M/F) 112/93 98/81

Handness(R/L) 191/14 167/12

Age(mean±std) 76.07±4.98 75.58±7.51

Education 16.17±2.74 14.85±2.10

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2015 April 27.
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Table 2

RAVLT scores.

Score ID Description

TOTAL Total score of the first 5 learning trials

TOT6 Trial 6 total number of words recalled

TOTB List B total number of words recalled

T30 30 minute delay number of words recalled

RECOG 30 minute delay recognition score

Multimodal Brain Image Anal (2013). Author manuscript; available in PMC 2015 April 27.
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